Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.013
Filtrar
1.
Cancer Med ; 13(7): e7165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613157

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, it has a poor prognosis due to its highly invasive and metastatic nature. Consequently, identifying effective prognostic markers and potential therapeutic targets has been extensively investigated. METTL5, an 18S rRNA methyltransferase, is abnormally high in HCC. But its biological function and prognostic significance in HCC remain largely unelucidated. This study aimed to investigate the role of METTL5 in HCC progression, and elucidate its possible molecular mechanisms in HCC via transcriptome sequencing, providing new insights for identifying new HCC prognostic markers and therapeutic targets. METHODS: The METTL5 expression in HCC and paracancerous tissues was analyzed using HCC immunohistochemical microarrays and bioinformatic retrieval methods to correlate METTL5 with clinicopathological features and survival prognosis. We constructed a METTL5 knockdown hepatocellular carcinoma cell line model and an animal model to determine the effect of METTL5 on hepatocellular carcinoma progression. Subsequently, RNA sequencing was performed to analyze the molecular mechanism of METTL5 in HCC based on the sequencing results, and relevant experiments were performed to verify it. RESULTS: We found that METTL5 expression was elevated in hepatocellular carcinoma tissues and correlated with poor patient prognosis, and in the analysis of clinicopathological features showed a correlation with TNM staging. In hepatocellular carcinoma cell lines with knockdown of METTL5, the malignant biological behavior was significantly reduced both in vitro and in vivo. Based on the sequencing results as well as the results of GO functional enrichment analysis and KEGG pathway enrichment analysis, we found that METTL5 could promote the generation and release of neutrophil extracellular capture network (NETs) and might further accelerate the progression of HCC. CONCLUSION: The m6A methyltransferase METTL5 is overexpressed in hepatocellular carcinoma (HCC) and correlates with poor prognosis. METTL5 accelerates malignant progression of HCC by promoting generation and release of the neutrophil extracellular traps (NETs) network, providing new insights for clinical biomarkers and immunotherapeutic targets in HCC prognosis.


Assuntos
Adenina , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética
2.
J Exp Clin Cancer Res ; 43(1): 111, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605400

RESUMO

BACKGROUND: The regulatory role of N6-methyladenosine (m6A) modification in the onset and progression of cancer has garnered increasing attention in recent years. However, the specific role of m6A modification in pulmonary metastasis of colorectal cancer remains unclear. METHODS: This study identified differential m6A gene expression between primary colorectal cancer and its pulmonary metastases using transcriptome sequencing and immunohistochemistry. We investigated the biological function of METTL3 gene both in vitro and in vivo using assays such as CCK-8, colony formation, wound healing, EDU, transwell, and apoptosis, along with a BALB/c nude mouse model. The regulatory mechanisms of METTL3 in colorectal cancer pulmonary metastasis were studied using methods like methylated RNA immunoprecipitation quantitative reverse transcription PCR, RNA stability analysis, luciferase reporter gene assay, Enzyme-Linked Immunosorbent Assay, and quantitative reverse transcription PCR. RESULTS: The study revealed high expression of METTL3 and YTHDF1 in the tumors of patients with pulmonary metastasis of colorectal cancer. METTL3 promotes epithelial-mesenchymal transition in colorectal cancer by m6A modification of SNAIL mRNA, where SNAIL enhances the secretion of CXCL2 through the NF-κB pathway. Additionally, colorectal cancer cells expressing METTL3 recruit M2-type macrophages by secreting CXCL2. CONCLUSION: METTL3 facilitates pulmonary metastasis of colorectal cancer by targeting the m6A-Snail-CXCL2 axis to recruit M2-type immunosuppressive macrophages. This finding offers new research directions and potential therapeutic targets for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/genética , Adenina , Adenosina , Neoplasias Colorretais/genética , Quimiocina CXCL2 , Metiltransferases/genética
3.
Microbiol Res ; 283: 127710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593581

RESUMO

Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus flavus, poses a severe threat to agricultural production, food safety and human health. The methylation of mRNA m6A has been identified as a regulator of both the growth and AFB1 production of A. flavus. However, its intracellular occurrence and function needs to be elucidated. Here, we identified and characterized a m6A methyltransferase, AflIme4, in A. flavus. The enzyme was localized in the cytoplasm, and knockout of AflIme4 significantly reduced the methylation modification level of mRNA. Compared with the control strains, ΔAflIme4 exhibited diminished growth, conidial formation, mycelial hydrophobicity, sclerotium yield, pathogenicity and increased sensitivity to CR, SDS, NaCl and H2O2. Notably, AFB1 production was markedly inhibited in the A. flavus ΔAflIme4 strain. RNA-Seq coupled with RT-qPCR validation showed that the transcriptional levels of genes involved in the AFB1 biosynthesis pathway including aflA, aflG, aflH, aflK, aflL, aflO, aflS, aflV and aflY were significantly upregulated. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) analysis demonstrated a significant increase in m6A methylation modification levels of these pathway-specific genes, concomitant with a decrease in mRNA stability. These results suggest that AflIme4 attenuates the mRNA stability of genes in AFB1 biosynthesis by enhancing their mRNA m6A methylation modification, leading to impaired AFB1 biosynthesis. Our study identifies a novel m6A methyltransferase AflIme4 and highlights it as a potential target to control A. flavus growth, development and aflatoxin pollution.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/genética , Aflatoxina B1/genética , Aflatoxina B1/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Peróxido de Hidrogênio/metabolismo , RNA Mensageiro/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo
5.
Planta ; 259(5): 109, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558186

RESUMO

MAIN CONCLUSION: Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.


Assuntos
Frutas , Solanum lycopersicum , Frutas/metabolismo , Solanum lycopersicum/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Epigênese Genética , Etilenos/metabolismo , Inativação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
7.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38566310

RESUMO

RNA modifications, including N-7-methylguanosine (m7G), are pivotal in governing RNA stability and gene expression regulation. The accurate detection of internal m7G modifications is of paramount significance, given recent associations between altered m7G deposition and elevated expression of the methyltransferase METTL1 in various human cancers. The development of robust m7G detection techniques has posed a significant challenge in the field of epitranscriptomics. In this study, we introduce two methodologies for the global and accurate identification of m7G modifications in human RNA. We introduce borohydride reduction sequencing (Bo-Seq), which provides base resolution mapping of m7G modifications. Bo-Seq achieves exceptional performance through the optimization of RNA depurination and scission, involving the strategic use of high concentrations of NaBH4, neutral pH and the addition of 7-methylguanosine monophosphate (m7GMP) during the reducing reaction. Notably, compared to NaBH4-based methods, Bo-Seq enhances the m7G detection performance, and simplifies the detection process, eliminating the necessity for intricate chemical steps and reducing the protocol duration. In addition, we present an antibody-based approach, which enables the assessment of m7G relative levels across RNA molecules and biological samples, however it should be used with caution due to limitations associated with variations in antibody quality between batches. In summary, our novel approaches address the pressing need for reliable and accessible methods to detect RNA m7G methylation in human cells. These advancements hold the potential to catalyse future investigations in the critical field of epitranscriptomics, shedding light on the complex regulatory roles of m7G in gene expression and its implications in cancer biology.


Assuntos
Guanosina/análogos & derivados , Nucleotídeos , RNA , Humanos , RNA/química , Nucleotídeos/metabolismo , Metilação , Metiltransferases/genética , Processamento Pós-Transcricional do RNA
8.
Cell Mol Biol Lett ; 29(1): 51, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600465

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play essential roles in the tumorigenesis of gastric cancer. However, the influence of lncRNA methylation on gastric cancer stem cells (GCSCs) remains unclear. METHODS: The N6-methyladenosine (m6A) levels of lncRNAs in gastric cancer stem cells were detected by methylated RNA immunoprecipitation sequencing (MeRIP-seq), and the results were validated by MeRIP-quantitative polymerase chain reaction (qPCR). Specific sites of m6A modification on lncRNAs were detected by single-base elongation- and ligation-based qPCR amplification (SELECT). By constructing and transfecting the plasmid expressing methyltransferase-like 3 (METTL3) fused with catalytically inactivated Cas13 (dCas13b) and guide RNA targeting specific methylation sites of lncRNAs, we obtained gastric cancer stem cells with site-specific methylation of lncRNAs. Reverse transcription (RT)-qPCR and Western blot were used for detecting the stemness of treated gastric cancer stem cells. RESULTS: The site-specific methylation of PSMA3-AS1 and MIR22HG suppressed apoptosis and promoted stemness of GCSCs. LncRNA methylation enhanced the stability of PSMA3-AS1 and MIR22HG to suppress apoptosis of GCSCs via the PSMA3-AS1-miR-411-3p- or MIR22HG-miR-24-3p-SERTAD1 axis. Simultaneously, the methylated lncRNAs promoted the interaction between PSMA3-AS1 and the EEF1A1 protein or MIR22HG and the LRPPRC protein, stabilizing the proteins and leading to the suppression of apoptosis. The in vivo data revealed that the methylated PSMA3-AS1 and MIR22HG triggered tumorigenesis of GCSCs. CONCLUSIONS: Our study revealed the requirement for site-specific methylation of lncRNAs in the tumorigenesis of GCSCs, contributing novel insights into cancer development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , RNA Guia de Sistemas CRISPR-Cas , Carcinogênese/genética , Apoptose/genética , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética
9.
BMC Med Genomics ; 17(1): 95, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643142

RESUMO

NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5.


Assuntos
Nanismo , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Microcefalia , Malformações do Sistema Nervoso , Masculino , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Facies , Mutação , Fenótipo , China , Linhagem , Metiltransferases/genética
10.
BMC Plant Biol ; 24(1): 294, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632532

RESUMO

BACKGROUND: Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS: In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS: Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.


Assuntos
Anisóis , Cucurbita , Metiltransferases , Metiltransferases/genética , Melhoramento Vegetal , Polinização , Plantas/metabolismo , Flores/metabolismo , Catálise
11.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
12.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627387

RESUMO

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Assuntos
NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Regulação para Baixo/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Macrófagos/metabolismo , Cirrose Hepática/metabolismo , Receptores de Quimiocinas , Metiltransferases/genética , Metiltransferases/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100
13.
J Cell Mol Med ; 28(6): e18195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429907

RESUMO

METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.


Assuntos
Carcinoma , Neoplasias Esofágicas , Metiltransferases , Humanos , Biomarcadores , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Glicólise/genética , Ácido Láctico , Metiltransferases/genética , 60414
14.
Structure ; 32(3): 258-260, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458157

RESUMO

In this issue of Structure, Mahana et al.1 present their structural characterization of an annotated methyl-CpG-binding domain (MBD) from the histone H3 lysine 9 methyltransferase SETDB2. This study reveals that, rather than binding DNA as previously hypothesized, this domain instead interacts with a cystine-rich domain from C11orf46, highlighting its involvement in protein-protein interactions.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/química , DNA/metabolismo , Metiltransferases/genética
15.
Clin Transl Med ; 14(3): e1621, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38468490

RESUMO

BACKGROUND: NOP2/Sun domain 2 (NSUN2) is one of the important RNA methyltransferases catalyzing 5-methylcytosine (m5C) formation and participates in many critical bioprocesses. However, the roles and underlying molecular mechanisms of NSUN2-mediated m5C modification in colorectal cancer (CRC) remain unclear. METHODS: To explore the NSUN2 expression in CRC, fresh tissue samples were collected and Nsun2 knockout mouse was constructed. In vitro and in vivo functional assays were conducted to assess the role of NSUN2. RNA array and bisulfite sequencing were used to investigate the potential targets. The mechanisms of NSUN2 function on SKIL were identified by m5C-methylated-RNA immunoprecipitation and RNA stability assays. Additionally, tissue microarray analysis was conducted and patient-derived tumour xenograft mouse (PDX) models were used to define the potential therapeutic targets. RESULTS: NSUN2 was highly expressed in CRC and correlated with poor CRC patient survival. Moreover, silencing NSUN2 suppressed CRC tumourigenesis and progression in Nsun2 knockout mouse models. In vitro and in vivo studies suggested that NSUN2 promoted colorectal cancer cell growth. Mechanistically, SKI-like proto-oncogene (SKIL) is positively regulated by NSUN2, and the NSUN2-SKIL axis is clinically relevant to CRC. NSUN2 induced m5C modification of SKIL and stabilized its mRNA, which was mediated by Y-box binding protein 1 (YBX1). Elevated SKIL levels increased transcriptional coactivator with PDZ-binding motif (TAZ) activation. CONCLUSIONS: Our findings highlight the importance of NSUN2 in the initiation and progression of CRC via m5C-YBX1-dependent stabilization of the SKIL transcript, providing a promising targeted therapeutic strategy for CRC.


Assuntos
Neoplasias Colorretais , Metiltransferases , Animais , Humanos , Camundongos , Neoplasias Colorretais/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Metiltransferases/genética , Camundongos Knockout , Proteínas Proto-Oncogênicas , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Thorac Cancer ; 15(11): 919-928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462740

RESUMO

BACKGROUND: Splicing factor B subunit 4 (SF3B4) has been confirmed to participate in the progression of many cancers and is considered to be a potential target for non-small cell lung cancer (NSCLC). Thus, the role and molecular mechanism of SF3B4 in NSCLC progression deserves further study. METHODS: Quantitative real-time PCR and western blot were employed to detect the mRNA and protein levels of SF3B4, Sm-like protein 4 (LSM4) and methyltransferase-like 3 (METTL3). Cell proliferation, apoptosis, invasion, migration and stemness were tested by cell counting kit-8, colony formation, flow cytometry, transwell, wound healing, and sphere formation assays. The interaction between SF3B4 and METTL3 or LSM4 was confirmed by MeRIP, RIP and Co-IP assays. Mice xenograft models were constructed to assess the effects of METTL3 and SF3B4 on NSCLC tumorigenesis. RESULTS: SF3B4 had high expression in NSCLC tissues and was associated with the shorter overall survival of NSCLC patients. Knockdown of SF3B4 suppressed NSCLC cell proliferation, invasion, migration and stemness, while inducing apoptosis. METTL3 promoted SF3B4 mRNA stability by m6A modification, and its knockdown inhibited NSCLC cell growth, metastasis and stemness by downregulating SF3B4. SF3B4 could interact with LSM4, and sh-SF3B4-mediated the inhibition on NSCLC cell functions could be reversed by LSM4 overexpression. In addition, reduced METTL3 expression restrained NSCLC tumor growth, and this effect was reversed by SF3B4 overexpression. CONCLUSION: METTL3-stablized SF3B4 promoted NSCLC cell growth, metastasis and stemness via positively regulating LSM4.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Adenina , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Metiltransferases/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteínas Nucleares Pequenas
17.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542322

RESUMO

Previous studies have shown that inorganic arsenic (iAs) exposure may be associated with genotoxic and cytotoxic effects. The aim of this study was to evaluate the relationship between several polymorphisms in AS3MT and APOE genes and urinary As and the relationship between these polymorphisms and pregnancy loss. We determined urinary As concentrations and performed genotyping analysis in 50 cases of spontaneous pregnancy loss and 50 controls, matched to cases on gestational age. The most frequently identified AS3MT polymorphisms in both cases and controls were in rs10748835 (80% cases and 68% controls), rs3740400 (78% cases and 64% controls), rs7085104 (74% cases and 48% controls), and rs1046778 (62% cases and 54% controls). We identified 30 different haplotypes in AS3MT SNPs, with four predominant haplotypes (>8%). Cases with Haplotype 1 had four-fold higher urinary DMA and two-fold higher MMA concentration than those without this haplotype, the MMA levels were lower in cases and controls with Haplotype 4 compared to Haplotype 1, and the DMA levels were significantly lower in cases with Haplotype 4 compared to Haplotype 3. Cases with Haplotype 1 had higher levels of all analyzed biomarkers, suggesting that Haplotype 1 may be associated with greater exposure to iAs and tobacco smoke. Our results suggest the importance of the AS3MT gene in iAs metabolism among pregnant women with low-level drinking water iAs exposure.


Assuntos
Aborto Espontâneo , Arsênio , Arsenicais , Água Potável , Humanos , Feminino , Gravidez , Arsênio/toxicidade , Arsênio/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Gestantes , Romênia , Polimorfismo de Nucleotídeo Único , Apolipoproteínas E/genética
18.
Front Biosci (Landmark Ed) ; 29(3): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538251

RESUMO

BACKGROUND: Osteosarcoma cells are prone to metastasis, and the mechanism of N6-methyladenosine (m6A) methylation modification in this process is still unclear. Methylation modification of m6A plays an important role in the development of osteosarcoma, which is mainly due to abnormal expression of enzymes related to methylation modification of m6A, which in turn leads to changes in the methylation level of downstream target genes messenger RNA (mRNA) leading to tumor development. METHODS: We analyzed the expression levels of m6A methylation modification-related enzyme genes in GSE12865 whole-genome sequencing data. And we used shRNA (short hairpin RNA) lentiviral interference to interfere with METTL3 (Methyltransferase 3) expression in osteosarcoma cells. We studied the cytological function of METTL3 by Cell Counting Kit-8 (CCK8), flow cytometry, migration and other experiments, and the molecular mechanism of METTL3 by RIP (RNA binding protein immunoprecipitation), Western blot and other experiments. RESULTS: We found that METTL3 is abnormally highly expressed in osteosarcoma and interferes with METTL3 expression in osteosarcoma cells to inhibit metastasis, proliferation, and apoptosis of osteosarcoma cells. We subsequently found that METTL3 binds to the mRNA of CBX4 (chromobox homolog 4), a very important regulatory protein in osteosarcoma metastasis, and METTL3 regulates the mRNA and protein expression of CBX4. Further studies revealed that METTL3 inhibited metastasis of osteosarcoma cells by regulating CBX4. METTL3 has been found to be involved in osteosarcoma cells metastasis by CBX4 affecting the protein expression of matrix metalloproteinase 2 (MMP2), MMP9, E-Cadherin and N-Cadherin associated with osteosarcoma cells metastasis. CONCLUSIONS: These results suggest that the combined action of METTL3 and CBX4 plays an important role in the regulation of metastasis of osteosarcoma, and therefore, the METTL3-CBX4 axis pathway may be a new potential therapeutic target for osteosarcoma.


Assuntos
Adenina , Neoplasias Ósseas , Metaloproteinase 2 da Matriz , Osteossarcoma , Humanos , Adenina/análogos & derivados , Epigênese Genética , Ligases/genética , Metaloproteinase 2 da Matriz/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/secundário , Proteínas do Grupo Polycomb/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Neoplasias Ósseas/patologia
19.
Ecotoxicol Environ Saf ; 275: 116258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547732

RESUMO

Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 µg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.


Assuntos
Arsênio , Tetrahymena thermophila , Arsênio/metabolismo , Ecossistema , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Biotransformação , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
20.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481314

RESUMO

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Linhagem Celular Tumoral , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Metilação de DNA , Fenótipo , Neoplasias Encefálicas/patologia , DNA/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...